Author : Mustakim, Giantika Oktaviani F

Publish : Jurnal Sains, Teknologi dan Industri

Abstract :

Prestasi Mahasiswa merupakan suatu bentuk dari pencapaian hasil selama mengikuti kegiatan Akademik pada sebuah Perguruan Tinggi.Predikat prestasi mahasiswa diperoleh dari hasil sebuah prediksi. Proses prediksi dilakukan dengan menggunakan metode K-Nearest Neighbor (KNN). Atribut yang digunakan dalam proses prediksi adalah Jenis Kelamin, Jenis Tinggal, Umur, Jumlah Satuan Kredit Semester (SKS), dan Jumlah Nilai Mutu (NM), sehingga dengan menerapkan algortima KNN dapat dilakukan sebuah prediksi berdasarkan kedekatan dari histori data lama (training) dengan data baru (testing). Penentuan atribut ini berdasarkan hasil penelitian terdahulu yang memiliki kesamaan dalam kasus prediksi mahasiswa yang selanjutnya divalidasi oleh bagian Akademik Fakultas Sains dan Teknologi. Proses prediksi dilakukan terhadap Mahasiswa Program Studi Sistem Informasi angkatan 2014/2015sebagai data testing dengan jumlah 50 data, serta berdasarkan dari data angkatan 2012/2013 sebagai data training dengan jumlah 165 data yang menghasilkan pengujian akurasi sebesar 82%. Hasil dari perhitungan algoritma KNN diimplememetasikan terhadap sebuah Early Warning System (EWS).Output dari sistem yang dibangun dapat dijadikan sebagai acuan bagi Mahasiswa untuk meningkatkan prestasi dan predikat perkuliahan dimasa yang akan datang.

Kata Kunci : Early Warning System(EWS),K Nearest Neighbor(KNN), Prediksi Predikat Mahasiswa

Conclusion :

Perhitungan algoritma K-NN yang diterapkan dalam memprediksi predikat prestasi Mahasiswa mampu menghasilkan akurasi dengan nilai 82%.Pengujian algoritma ini dilakukan menggunakan perhitungan confusion matriks yaitu membandingkan predikat pada semester sebelumnya dengan predikat hasil prediksi.Proses prediksi predikat prestasi Mahasiswa dilakukan dengan membangun sebuah Early Warning System (EWS) berdasarkanalgoritma K-NN.Sistem yang dibangun mampu memprediksi sesuai dengan perhitungan algoritma secara manual. Data yang digunakan adalah 165 record data training dari Mahasiswa angkatan 2012dan 50 record data testing dari Mahasiswa angkatan 2014. Semakin banyak data yang digunakan maka semakin tinggi akurasi yang dihasilkan dari algoritma K-NN pada kasus prediksi predikat Mahasiswa.Beberapa saran yang dapat diberikan untuk penelitian selanjutnya adalah terkait proses analisa yang digunakan dalam proses melakukan prediksi predikat prsetasi Mahasiswa dapat dilakukan dengan beberapa metode lainnya seperti DecisionTree, Regresi linier dan metode klasifikasi lainnya

Sumber Gambar